Robust Adaptive Motion and Force Control of Robot Manipulators in Unknown Stiffness Environments

نویسندگان

  • Bin Yao
  • Masayoshi Tomizuka
چکیده

Robust motion and force tracking control of robot manipulators in the presence of parametric uncertainties in both the robot dynamics and the contact surface as well as edema1 disturbances is considered in this paper. Several approaches are adopted to compare their advantages. In the absence of time-varying disturbances, a continuous adaptive motion and force tracking control algorithm is developed to deal with the unknown robot parameters and the unknown surface parameters such as stiffness and friction coeficient. No prior information on the parameter Uncertainties is assumed. Ezact motion and force tracking control is ensured without any persistent -citation being satisfied. A discontinuous term is introduced in the control law to guarantee stability and tracking performance under the presence of time-varying ezternal disturbances. Finally, under an assumption that the bounds on the modelling error are usually known, the control law is smoothed with a modified adaptation law to avoid a possible chattering problem induced by the discontinuous control term and, at the same time, to achieve robustness to unmodelled dynamics. Simulation results illustrate the eflectiveness of the proposed methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Hybrid Motion Force Control Algorithm for Robot Manipulators

In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...

متن کامل

A Novel Robust Adaptive Trajectory Tracking in Robot Manipulators

In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...

متن کامل

Design of an Adaptive Fuzzy Estimator for Force/Position Tracking in Robot Manipulators

This paper presents a stable new algorithm for force/position control in robot manipulators. In this algorithm, position vectors are measured by sensors and then used in the control law. Since using force sensor has some issues such as high costs and technical problems, an approach is presented to overcome these issues. In this respect, force sensor is replaced by an adaptive fuzzy estimator to...

متن کامل

Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...

متن کامل

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004